skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Yingchao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 27, 2024
  2. Ultrashort light pulses can selectively excite charges, spins, and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributions, and their couplings, in the charge-density wave (CDW) material 1T-TaSe2. After exciting the material with a femtosecond pulse, fast spatial smearing of the laser-excited electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This finding is in contrast to all previous observations in multiple materials to date, where the electron temperature decreases monotonically via electron–phonon scattering. By tuning the laser fluence, the magnitude of the electron temperature modulation changes from ∼200 K in the case of weak excitation, to ∼1,000 K for strong laser excitation. We also observe a phase change of π in the electron temperature modulation at a critical fluence of 0.7 mJ/cm2, which suggests a switching of the dominant coupling mechanism between the coherent phonon and electrons. Our approach opens up routes for coherently manipulating the interactions and properties of two-dimensional and other quantum materials using light.

     
    more » « less
  3. Quantum materials represent one of the most promising frontiers in the quest for faster, lightweight, energy-efficient technologies. However, their inherent complexity and rich phase landscape make them challenging to understand or manipulate. Here, we present a new ultrafast electron calorimetry technique that can systematically uncover new phases of quantum matter. Using time- and angle-resolved photoemission spectroscopy, we measure the dynamic electron temperature, band structure, and heat capacity. This approach allows us to uncover a new long-lived metastable state in the charge density wave material 1 T -TaSe 2 , which is distinct from all the known equilibrium phases: It is characterized by a substantially reduced effective total heat capacity that is only 30% of the normal value, because of selective electron-phonon coupling to a subset of phonon modes. As a result, less energy is required to melt the charge order and transform the state of the material than under thermal equilibrium conditions. 
    more » « less